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Abstract-A linear stability analysis has been performed to study the onset of convective instability in a 
horizontal inert porous layer saturated with a fluid undergoing zero-order exothermic chemical reactions. 
The horizontal porous layer is cooled from the upper boundary while two different thermal boundary 
conditions are imposed at the lower boundary, i.e. an isothermal wall and an adiabatic wall. The resulting 
eigenvalue problems were solved approximately using a single-term Galerkin method that gives the critical 
Rayleigh number and the associate wave number at a given Frank-Kamenetskii number. It is found that, 
with chemical reactions, the fluid in the porous medium is more prone to instability as compared to the 

case in which chemical reactions are absent. 

INTRODUCTION 

During the past three decades, a great deal of effort 
has been devoted to the study of free convection in a 
fluid-saturated porous medium with and without a 
uniformly distributed heat source with applications 
to nuclear reactor safety and geothermal reservoir 
engineering. The studies of onset of free convection 
and its associate convective pattern in a variety of 
geometries in these systems have been well docu- 
mented in the literature [l-3]. However, very little 
work has been performed on the effect of chemical 
reactions on free convection in porous media until 
recently. The increasing interest in this topic has been 
motivated by its applications to tubular reactors, oxi- 
dation of solid materials and synthesis of ceramic 
materials. 

When an exothermic reaction takes place in a fluid- 
saturated porous medium, the heat generated by the 
reaction changes the fluid density and free convection 
may occur. Kordylewski and Krajewski [4] were 
among the first to consider the interaction of chemical 
reactions and free convection in a porous medium. 
They formulated the problem based on Darcy’s law 
with the Boussinesq approximation, assuming that a 
zero-order exothermic reaction occurs in the fluid 
phase and that local therm&l equilibrium exists 
between the fluid and the solid phases. The effect of the 
Rayleigh number on the critical conditions of thermal 
ignition was investigated. Using the same formu- 
lation, Hlavacek and co-workers [5-71 have carried 
out a numerical solution and a stability analysis on 
free convection in a confined porous medium with 
zero-order exothermic reactions. A stability analysis 
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based on the same formulation was recently per- 
formed by Farr et al. [8]. In a recent paper, Vafai et 

al. [9] obtained a numerical solution for chemically 
driven convection in a porous cavity with isothermal 
walls at the top and bottom surfaces and thermally 
insulated on the side walls ; both the inertia and the 
viscous force are taken into consideration in the 
momentum equation. 

In this paper, we shall study the effect of chemical 
reaction on the onset of free convection in a horizontal 
inert porous layer cooled from the upper boundary 
with two different lower thermal boundary con- 
ditions : (1) an isothermal wall ; and (2) an adiabatic 
wall. The assumptions used in the formulation of the 
problem are the same as those used in the previous 
work [4-81. Closed-form solutions for temperature 
distribution of the two basic undisturbed states cor- 
responding to the two thermal boundary conditions 
are first obtained; their ignition conditions are tho- 
roughly investigated. A linear stability analysis is then 
performed and the resulting eigenvalue problems are 
solved approximately, based on the one-term Galer- 
kin method [lo]. The critical Rayleigh number and its 
associate wave number are obtained for a given value 
of the Frank-Kamenetskii number. It is found that 
chemical reactions give rise to nonlinear temperature 
distributions in the basic undisturbed state that desta- 
bilize the fluid in the porous medium. The problem 
is particularly relevant to the safe operation of an 
exothermic reactor during its shut-down period [l 11. 

FORMULATION OF THE PROBLEM 

Consider a horizontal constant porosity layer of 
finite thickness, bounded between z = 0 and z = H 

(with z-axis directed vertically upward) and of infinite 
extent in the horizontal plane (x, v). The inert porous 
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NOMENCLATURE 

horizontal wave number 
reaction orders 
pre-exponential factor 
constant defined in equation (9) 
integration constants in equation (17) 
differentiation with respect to z 
activation energy 
Frank-Kamenetskii number, 
QBY: YbH2(E/RTz) e-‘lRT~/a,,, 
gravitational acceleration 
thickness of the porous layer 
permeability 
wave numbers in the X- and y- 
directions 
pressure 
Darcy velocity vector 
heat of reaction 
universal gas constant 
media Rayleigh number for a reacting 
gas, gBmT,2Ia,vE 
temperature 
time 
prescribed temperatures of the lower 
and upper porous layer 
a characteristic temperature for a 
reacting gas, RT,!/E 
velocity components 

W 

&Y,Z 

x y 

YO 
YF 

function defined in equation (36) 
coordinates 
quantities defined in equation (46) 
mass fraction of oxidizer 
mass fraction of fuel. 

Greek symbols 

% effective thermal diffusivity of the 
saturated porous medium 

P thermal expansion coefficient 
0 dimensionless temperature 
0 function defined in equation (37) 
V kinematic viscosity 

P density 
0 heat capacity ratio of the saturated 

porous medium to that of the gas 
w growth rate. 

Subscript 
b basic undisturbed state. 

Superscripts 
* dimensionless quantity 
I disturbed quantity. 

layer is saturated with a chemically reactive gas subject 
to weakly exothermic chemical reactions and is cooled 
from the top at a temperature of T,. If the temperature 
in the whole domain of interest varies only slightly 
from T,, a zero-order reaction can be assumed and 
the Boussinesq approximation can be invoked. More- 
over, it is assumed that local thermal equilibrium 
exists between the solid matrix and the saturated fluid. 
With these assumptions, the governing equations in a 
Cartesian coordinate system (x, y, z) for convection in 
a porous medium, based on Darcy’s law, are : 

au au aw -+-++=o, ax ay 

q = - X(vp+pg) 

P = po[l --PG’- TJI (3) 

dT 
crat+~*VT=a,V2T+QBY$Y~exp -? 

i 1 RT ’ 

(4) 

where q = &.+F+~w is the Darcy velocity vector, p 
and Tare the pressure and temperature, t is the time, 
0 is the heat capacity ratio of the saturated porous 
medium to that of the gas, p, p, and fl are the density, 

viscosity and the thermal expansion coefficient of the 
gas, K is the permeability, CI, is the effective stagnant 
thermal conductivity of the saturated porous medium, 
Q is the heat of reaction, B is the pre-exponential 
factor, E is the activation energy, R is the universal 
gas constant, Y, and Yo are mass fractions of fuel and 
oxidizer, and a and b are their respective reaction 
order. Examing the chemical reaction term in equa- 
tion (4), we note that there are two possibilities for 
the existence of zero-order reactions. The first is the 
case of a = b = 0, which means that the chemical reac- 
tion does not depend on the concentrations of reac- 
tants. This is obviously unrealistic because this implies 
that chemical reaction can occur without the presence 
of reactants. The second case is that only a negligible 
amount of reactant is depleted during the reaction, 
which is observable only for the weakly reacted situ- 
ation in a flow with a small temperature variation, as 
the problem analyzed in this study. Clearly, for the 
vigorous combustion case, chemical reaction depends 
strongly on the concentration of reactants and hence 
zero-order reaction cannot be applied. Similarly, in a 
flow field with a moderate temperature variation, the 
reactant concentrations are functions of position 
(because the reaction rate is a function of tem- 
perature) so that the zero-order reaction cannot be 
applied either. 
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The hydrodynamic boundary conditions for this Equation (15) can be rewritten in the dimensionless 
problem are form as 

W(X>Y,O) = 0, W(X,Y,ff) = 0 (5a, b) 

and the thermal boundary condition at the top of the 
porous layer is given by 

T(x,y,H) = T,. (6) 

For’the bottom thermal boundary condition, we con- 
sider two different cases: an isothermal wall and an 
adiabatic wall. The thermal boundary conditions cor- 
responding to these two cases are : 

case l-an isothermal wall, 

T(x,y,O) = T,,, 

where T, > T, ; 
case 2-an adiabatic wall, 

g(“.y, 0) = 0. 

d28, = _FKeo b 

dz* (16) 

with z* = z/H and FK = C(H*/a,)(E/RTz) being the 
so-called Frank-Kamenetskii number which is com- 
monly called the reduced Damkiihler number in the 
combustion literature. Physically, the FK number is a 
ratio of the characteristic flow time to the charac- 
teristic reaction time. Integrating equation (I 6) yields 
the following general solution : 

We now a?sume that the fluid in the porous medium 
is subject to’a high-activation energy reaction such 
that RTJE cc 1. With this approximation, equation 
(4) can be simplified to 

(9) 

where C = QBrr Yb exp (- E/RT,) and t) = (T- TJ/ 
T, with T, = RT,!/E being the prescribed reference 
temperature for a reacting gas. Equation (6) in terms 
of B reduces to 

Q&Y, 1) = 0, (10) 

while boundary conditions (7) and (8) become 

@,Y, 0) = Oh (11) 

fS (X>Y> 0) = 0, (12) 

where &, = (Th - T,)/(RTz/E) 

BASIC UNDISTURBED STATES AND IGNITION 
CONDITIONS 

We now consider the two basic undisturbed states 
corresponding to the two different thermal boundary 
conditions at the lower boundary. At an undisturbed 
state, we have : * 

$7 = (u, 0, w) = (O,O, 0) (13a) 

0 = &(z), P = ~~(4, and P = ~~(4 

(13bd) 

and equations (2) and (4) reduce to : 

.dpb 
z +Pbg = o 

d20b 
~ + CeOb = 0. a,,, dzZ (15) 

forFK # 0, (17) 

where c1 and cZ are the integration constants to be 
determined. 

For case 1, applying the following isothermal 
boundary conditions, 

Qb=Bh atz*=O and &=O atz*=l 

(lSa, b) 

gives c, implicitly by the following equation : 

(194 
and cz by 

c2 = e A (19b) 

It follows from equation (19a) that c, is a function of 
FK and .G,,. 

For this case, ignition begins when the self-sus- 
tainable or adiabatic condition occurs at the lower 
boundary, i.e. 

g(0) = 0. (20a) 

This condition means that the heat generated by the 
reaction is high enough to support further reaction 
without the aid of heat transfer from the wall. Apply- 
ing equation (20a) to equation (19a) gives 

c, = 2FKe’h. (2Ob) 

Substituting the above equation into equation (19b) 
yields the following critical value of FK at ignition : 

(21) 
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for case 1. 
temperature profiles at different values of FK 

for case 1. 

The effect of f3,, on this critical value of FK is presented 
in Fig. 1. It is shown that the critical value of FK 
increases to a maximum value of 0.8785 (cor- 
responding to f$, = 1.19) and then decreases as 6,, is 
increased (see also Table 1). 

Computations for c, and c2 from equations (19) 
were carried out for selected values of &, and with 
different values of FK up to their ignition values. The 
results of these computations for f& = 1 are listed in 
Table 2. The corresponding undisturbed temperature 

profiles are presented in Fig. 2. It is shown that, at 
small values of FK, the basic temperature profile is 
almost linear with the vertical coordinate z*. Because 
chemical reactions give rise to heat generation, the 
basic undisturbed temperature profile becomes more 
nonlinear as the value of FK is increased for a higher 
heat generation rate. 

For case 2, the dimensionless thermal boundary 
conditions are 

d& -=O atz*=O and f&=0 atz*=l, 
dz* 

Table 1. Critical values of FK at 
different values of f3,, for case 1 

(2% b) 
which can be applied to determine c, and c2. This gives 

eJET(l-Jm) = (l+Jm) (23a) 

0.50 0.6587 
1.00 0.8662 
1.08 0.8746 
1.19 0.8785 
1.20 0.8784 
1.22 0.8781 
1.50 0.8523 
2.00 0.7435 
3.00 0.4734 

c2 = 1. (23b) 

The implicit relation between c, and FK given by equa- 
tion (23a) is illustrated in Fig. 3, which shows that no 
solution exists for cI beyond a critical value of FK. 
Note that Fig. 3 is just a scaled plot of the typical 

Table 2. Values of cl, c2, a, and Ra, for case 1 with 0,, = 1 

FK Cl c2 a, Ra, 

0 3.141 39.47 
0.1 1.351 0.1279 3.109 38.53 
0.2 1.718 0.2453 3.082 38.69 
0.3 2.102 0.3572 3.059 36.98 
0.4 2.505 0.4667 3.040 36.37 
0.5 2.930 0.5759 3.024 35.84 
0.6 3.378 0.6866 3.012 35.38 
0.7 3.852 0.8003 3.003 34.98 0.0 0.2 0.4 0.6 0.8 1.0 

0.8 4.357 0.9185 2.996 34.63 
0.8662 4.675 0.9924 2.990 33.75 

FK 

Fig. 3. Values of c, vs FK for case 2. 
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for case 2. 

Frank-Kamenetskii’s bifurcation diagram [12]. For 
FKless than, this critical value, there are two values of 
c, which correspond to two basic undisturbed tem- 
perature profiles. The critical value of FK beyond 
which no solution exists for this weakly reactive case 
is then defined as the ignition state. For values of FK 
higher than this critical value, the solution jumps to 
the vigorous combustion case (i.e. the upper branch 
of the S-shaped ignition-extinction curve), which is 
beyond the scope of this study. It follows that the 
criteria for ignition is 

F= 0. 
I 

A differentiation of equation (23a) with respect to c, 
gives 

c, = 2FK+4. (25) 

Substituting equation (25) into equation (23a) yields 

eJ5Fm=m+2 
$zG?-2’ 

(26) 

A numerical solution of equation (26) gives 
FK = 0.8785, which is the critical value of FK at 
ignition for case 2. This critical value of FK was given 
previously by Frank-Kamenetskii [ 121. The two basic 
undisturbed temperature profiles for case 2 cor- 
responding to two values of ci for FK at 0.2, 0.6 and 
0.8 (i.e. less the critical value of 0.8785) are presented 
in Fig. 4. The dashed lines (corresponding to the upper 
branch of c,) are known to be physically unrealistic in 
combustion literature, because the temperature 
increases as the value of FK (or heat generation) is 
decreased. They are referred to as the unstable states 
in the chemical reactor literature. The solid lines rep- 
resent the physically realistic cases (corresponding to 
the lower branch of c,), where temperature increases 
as the value of FKis increased, as it should. Note that, 
for physically realistic cases, the temperature profile 
becomes more nonlinear as the value of FK increases 

(meaning a stronger chemical reaction). The values of 
c, for a physically realistic case at different values of 
FK are listed in Table 3. 

The temperature of the adiabatic wall can be 
obtained from equation (17) to give 

0,(O) = oh = In SK 
( > 

(27) 

Substituting the above equation into equation (23a) 
yields 

(28) 

which is identical to equation (21) if FK in equation 
(28) is replaced by (FK),. Thus, equation (28) can also 
be represented by Fig. 1 if (FK)c is replaced by FK. 
Under this situation, the maximum value of FK (i.e. 
FK = 0.8785) corresponds to the critical value of FK 
for case 2 and the right-hand side of the curve rep- 
resents the adiabatic wall temperature of the physi- 
cally unrealistic cases. 

LINEAR STABILITY ANALYSIS 

We now perform a linear stability analysis by letting 

4 ZX ;uu’ +jv’ + kwf 

p = pb(Z) +p’(% y, z, t) 

p = Pb cz> + p’cx, y, z, t> 

@ = eb (2) + @(x, y, 2, t) > (29) 

where the primes indicate small perturbations from 
the undisturbed state. Substituting equation (29) into 
equations (l)-(3) and (9) and neglecting nonlinear 
terms, we obtain the following linear equations in 
terms of w’ and 8’ : 

vz w, = a==? TV:8 

80 d& 
0 - + w’ - = c(,V* 0’ + CeR@’ 

dt dz 

where V: = (~“/~x’)+(~‘/~y’). Equations (30) and 
(31) can be expressed in the following dimensionless 
form : 

V2w*=Ra($+g) (32) 

aw aw 2 I 
d~*2 + 7 + 2 

ay 
+ FKe”@‘, 

(33) 

where w* = w/H/a,,,, (x*, y*, z*) = (x, y, z)/H, t* = 
ct,t/aH2 and 

gpKHT, &KHRT,2 
Ra=-----= 

V% va,E 
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is the media Rayleigh number for a reacting gas in 
porous media [4]. 

The boundary conditions in terms of w* and 8’ for 
the two cases are 

and 

w* = 0 at z* = 0,l 

8’ = 0 at z* = 0,l 

w* = 0 at z* = 0,l 

0’ = 0 at z* = 0 

(34a) 

(34b) 

(35a) 

(35b) 

We now assume that the solution for equations (32) 
and (33) is in the form 

w* = W(z*) exp [i(a+my-got)] (36) 

and 

8’ = O(z*) exp [i(lx+my-~wt)], (37) 

where 1 and m are the dimensionless wave numbers in 
the x- and y-directions. Substituting equations (36) 
and (37) in equations (32) and (33) gives 

(D*--.*)W= -Ra*@ (38) 

-wO+ IV% = (D* -a2)0+FKes@, (39) 

where a = J’ 1 +m IS the dimensionless horizontal 
wave number and D = (d/dz*). For the marginal stab- 
ility at which w = 0, equation (39) becomes 

(D2 -a*)@ - I+‘$ + FKe% = 0. (40) 

Equations (38) and (40), subject to the homogeneous 
boundary conditions (34) or (35), are an eigenvalue 
problem, with Ra being the eigenvalue. 

APPROXIMATE SOLUTIONS FOR THE 

EIGENVALUE PROBLEMS 

An approximate solution for the eigenvalue can be 
obtained by the Galerkin method [lo]. To this end, 
we let 

W=A,W, and O=B,O,, (41) 

where W, and 0, are the trial functions which must 
satisfy the boundary conditions (34) or (35). Sub- 
stituting equation (41) in equations (38) and (40), 
multiplying the resulting equations by W, and by O,, 
respectively, integrating each equation from z* = 0 to 
z* = 1 and performing some integration by parts, we 
obtain 

A,[((DW,)*+u2W,)]+B,a2Ra(W,0,) = 0 (42) 

A,(W,$> 
+B,[(-(D0,)2-~2(0,)2+FKeH@~)] =O, (43) 

where (f) = s: f dz*. Eliminating A, and B, between 
equations (42) and (43), we obtain the following equa- 
tion for the Rayleigh number (Ra) : 

Ra = 

((DW,)‘+a’ W,)((D0,)‘+a20:-F’Ke”~O:) 

a’<w,e,)i(w,o, $?> 

(44) 

For case 1, we choose the trial functions as 

W, (z*) = sin 7cz* (45a) 

0, (z*) = sin 7cz*, (45b) 

which satisfy the boundary conditions (34). Sub- 
stituting equations (45) in equation (44) gives 

Ra = -(n2+u2)(n2+a2-X)/(2a*Y), (46) 

where 

whose values can be obtained by numerical inte- 
gration. The minimum value of the Rayleigh number 
Ra occurs at 

(47) 

which is the horizontal wave number at the onset of 
free convection. Equation (47) is obtained by differ- 
entiating equation (46) with respect to a. Substituting 
equation (47) in equation (46) gives the value of the 
critical Rayleigh number. Note that, for FK = 0 and 
Oh = 1 (and consequently X = 0 and Y = -l/2), 
equations (47) and (46) give a, = rc and Ra, = 4n*, 
where the Rayleigh number is defined based on the 
characteristic temperature difference AT, = (T,, - T,) 
at which no chemical reactions take place. These 
values of a, and Ra, are exactly the same values 
obtained previously by Lapwood [ 131. 

The critical Rayleigh number Ra, as a function of 
FK at selected values of &, for case 1 is presented in 
Fig. 5. It is shown that the critical Rayleigh number 
decreases as the value of FK is increased. Thus, chemi- 
cal reaction in a horizontal porous layer enhances 
instability. This is reasonable because chemical reac- 
tion leads to non-linear temperature distribution in 
the undisturbed state. The value of the wave number 
at the onset of convection a, as a function of FK 
for this case is presented in Fig. 6 which decreases 
asymptotically. The variations of the critical Rayleigh 
number and the wave number as a function of FK are 
small. The values of Ra, and a, for case 1 with 8, = 1 
are also listed in Table 2. 

For case 2, we choose the trial functions as 

W, (z*) = sin7cz* (4Sa) 

0, (z*) = cos (n/2)2*, (4Sb) 
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Fig. 6. Critical wave number vs FK for case 1. Fig. 8. Critical wave number vs FK for case 2. 

which satisfy the boundary conditions (35). Sub- 
stituting these trial functions into equation (44) yields 

Ra = _ 37J (n~+a~)(n~+4a~-4X) 

64 a2 Y 
(49) 

The minimum value of the Rayleigh number occurs 
at 

a, = [;&E]. 
The critical Rayleigh number as a function of FK 

for the physically realistic cases is presented in Fig. 7. 
It is seen that the critical Rayleigh number decreases 
drastically from infinity (i.e. unconditionally stable) as 
the FK value increases from zero. The corresponding 
critical wave number decreases as the value of FK is 
increased, as shown in Fig. 8. The decrease in the 
critical wave number is drastic near the ignition point. 
These values of Rlz, and a, are also listed in Table 3. 

CONCLUDING REMARKS 

The effect of zero-order exothermic chemical reac- 
tion on the onset of free convection in a fluid-saturated 

800 

600 
\ 

200 

0 _I 

0.0 0.2 0.4 0.6 0.8 1.0 

FK , 
Fig. 7. Critical Rayleigh number vs FK for case 2. 
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I 
Table 3. Values of c,, a, and Ra, for case 2 

FK c 4 R4 

0.1 0.2107 2.198 684.3 
0.2 0.4463 2.171 319.7 
0.3 0.7135 2.139 197.5 
0.4 1.022 2.101 135.7 
0.5 1.389 2.054 98.04 
0.6 1.843 1.993 72.06 

porous medium has been investigated in this paper. 
The chemical reaction leads to a distributed heat 
source which gives rise to a nonlinear temperature 
distribution in the undisturbed state. Thus, the effect 
of chemical reactions is to enhance the onset of free 
convection compared to the case in which chemical 
reactions are absent. 
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